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Abstract—Power is becoming an increasingly important con-
cern for large supercomputer centers. However, to date, there
have been a dearth of studies of power usage “in the wild”—
on production supercomputers running production workloads.
In this paper, we present the initial results of an effort to
characterize the power usage of three Top500 supercomputers at
Los Alamos National Laboratory: Cielo, Roadrunner, and Luna
(#6, #10, and #45, respectively, on the November 2011 Top500
list). Power measurements taken both at the switchboard level
and within the compute racks are presented and discussed.

I. INTRODUCTION

A major challenge of exascale computing is to deliver a
thousandfold increase in performance while only slightly in-
creasing power consumption over current petascale systems [1],
[2]. While there has been much research on increasing power
efficiency within various components of a supercomputing
system—processors, interconnection networks, system soft-
ware, programming models, algorithms, and applications—
and numerous controlled studies, there is comparatively little
data available describing how much power a supercomputer
draws while running a production scientific workload. The
goal of this paper is to fill that gap by presenting power
data measured at the main supercomputer data center at Los
Alamos National Laboratory (LANL) and on three of the
world’s fastest supercomputers, based on the annual Top500
list of supercomputer performance [3].

In particular, we present full-system power data measured
since inception of two production supercomputers, Cielo
and Roadrunner, and one preproduction supercomputer, Luna.
Combined, these systems represent a total of just under 13,500
nodes, making this, to our knowledge, the largest study of
power drawn during a real workload. For Luna, we further
include some controlled studies to analyze the extremes of that
system’s power usage and examine the discrepancies between
measuring power at the switchboard level and at the sub-rack
level.

Our findings are that power variability differs substantially
across architectures; from a power perspective, real scientific
workloads bear little in common with the LINPACK benchmark
(not too surprisingly); the difference between worst-case and
average-case power draws indicates that supercomputing data
centers may contain a fair amount of “trapped capacity” in their
power systems, more if power capping can be implemented on a
full-system basis; job schedulers theoretically have the potential

to increase trapped capacity even further by pairing jobs of
different power envelopes; and energy savings are unlikely to
be achieved merely by frequency and voltage scaling, given
how supercomputers are currently run.

We anticipate that this paper will assist future power studies
that require knowledge of real-world supercomputer power
data to drive their approach and solutions.

The remainder of the paper is organized as follows. We
discuss the most relevant pieces of related work in Section II.
Section III describes LANL’s data center in terms of its power
characteristics and the main supercomputers it hosts. The main
section of the paper is Section IV, where we present our
power measurements and associated analyses. Section V briefly
describes some prospects for follow-on research. Finally, we
draw some conclusions from our findings in Section VI.

II. RELATED WORK

Fan, Weber, and Barroso quantify the power usage of three
workloads that run at one of Google’s large data centers: Google
Web search, GMail, and various offline MapReduce jobs [4].
As in our work, they examine power characteristics at the
rack, sub-cluster, and full-cluster levels. The key characteristic
that distinguishes our work from theirs is that we focus on
a production scientific workload in which applications tend
to be more tightly coupled than search and email services
and MapReduce jobs. Scientific applications generally include
substantial communication within sets of processes/nodes, and
the workload as a whole tends to allocate and free large
numbers of nodes at once. This can incur sudden power
changes and therefore requires great care in implementing
power capping. Also, unlike Google’s large data centers,
LANL’s supercomputers run at fairly constant job load over
time, limiting the usefulness of the Google paper’s studies of
reducing power during off-peak times. LANL’s data center has
no off-peak times. Although incidental, our paper presents data
that covers twice as many nodes and for twice the duration as
Fan, Weber, and Barroso’s work.

In the context of scientific computing, Laros et al. have
performed a number of large-scale power studies on two
Cray XT supercomputers [5]. They quantified the power usage
of a number of representative scientific applications with
different CPU frequencies and by introducing power savings
in the network by scaling back communication bandwidth. The
main difference between our work and Laros et al.’s is that
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they performed controlled studies of individual applications
while our study represents a production workload with many
applications of different sizes running concurrently in a space-
shared manner across entire systems.

III. FACILITY

Figure 1 illustrates our power-monitoring infrastructure.
13,200V enter the data center and are converted to 3-phase,
480V power to feed the substations. The substations transmit
power through a rotary uninterruptible power supply (RUPS)
to a number of switchboards, each of which feeds multiple
power distribution units (PDUs) on the machine-room floor.
These convert the power into 3-phase, 208V or 480V power for
distribution to the compute racks. An assumption the facilities
engineers make is that no PDU will ever exceed 80% load
(e.g., 200 kVA for a 240 kVA PDU). Otherwise, the unit runs
the risk of observing a voltage sag, tripping the circuit breaker,
and cutting power to the associated racks (and thereby making
many users quite unhappy).
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Fig. 1: Power-monitoring infrastructure

Our data center can deliver a aggregate of 19.2 MW of power.
From January through April 2012, the facility has generally
been running at about half of peak capacity and has averaged
a power usage effectiveness (PUE)—the ratio of total power to
IT equipment power [6]—of 1.41, which, while far from the
state of the art in efficient data-center design, is nevertheless
substantially better than the 1.86 averaged by the data centers
in Greenberg et al.’s study [7].

Power can be monitored at each switchboard and at each rack.
In fact, two of our supercomputers each provide finer than
rack-resolution monitoring: Roadrunner supports intra-node
monitoring, and Luna supports monitoring at the “shelf” (10-
node) level. Switchboard monitoring is automatically logged
and stored. Originally, logging was performed at 15-minute
intervals. In late February/early March 2012 we increased
the logging rate to 1-minute intervals to help correlate the
switchboard readings with other power monitors. Currently,
rack and sub-rack monitoring is done only on demand, by
explicitly polling the monitoring devices. We therefore have
comparatively little data at this level.

An important feature of the way our data center is con-
figured is that each switchboard is associated with a single
supercomputer. Consequently, we can measure power indepen-
dently for each supercomputer, a capability that would not
otherwise be possible. Note, however, that cooling and storage
(parallel filesystems) are not associated with any particular
supercomputer and reside on separate switchboards.

Table I lists some key characteristics of the systems we
used in our study. Roadrunner was the world’s first petascale
system [8]. It uses a hybrid architecture with AMD Opteron
CPUs and IBM Cell processors as computational accelerators.
Each node comprises a total of 40 cores: two sockets of dual-
core Opteron and four sockets of Cell, with each Cell socket
containing one general-purpose control processor and eight
vector processors [9]. Nodes are connected by a dual-data-
rate (DDR) InfiniBand [10] fat tree from Mellanox. Due to the
Cell’s high peak performance per watt, Roadrunner ranked sixth
on the second Green500 list [11] even though its aggregate
performance was substantially higher than virtually every other
system on the list.

Cielo is a large Cray XE6 system [12]. Each node contains
two sockets of 8-core AMD Magny-Cours CPUs, and nodes are
connected with a Cray Gemini network [13], organized as a 3-D
torus. What makes Cielo interesting from a power perspective
is that the communication fabric is integrated into the nodes,
not separated as it is in the other two systems in Table I.
Consequently, racks are more homogeneous in Cielo, while
Roadrunner and Luna incorporate network switches at various
points in the system. For example, Roadrunner’s first-level
InfiniBand switches are housed in 17 out of its 272 compute
racks, and there are an additional 4 second-level InfiniBand
switches separate from the compute racks but on a shared
switchboard.

Luna is a significantly different system from both Roadrun-
ner and Cielo. First, it is commodity cluster with no custom
hardware [14]. Each node contains two sockets of 8-core Intel
Sandy Bridge CPUs, and nodes are connected with a quad-
data-rate (QDR) InfiniBand [10] fat tree from QLogic. Second,
Luna is intended to run a large number of small jobs (tens to
hundreds of nodes) rather than a small number of large jobs
(thousands of nodes), as is the case for Roadrunner and Cielo.
Finally, while Roadrunner and Cielo are running a production
workload, at the time we gathered our data, Luna had not yet
stabilized to the point where general users were allowed onto
the system. (It has since joined Roadrunner and Cielo as a
production resource.) Because of Luna’s inchoate status, it was
comparatively easy to reserve the entire machine for our work;
our controlled studies are therefore all performed on Luna.
Note that the Top500 data (rank and power consumption) for
Luna shown in Table I is a bit misleading as it represents only
about half the system. This was all that was installed at the
time of the November 2011 Top500 submission due date.

Roadrunner, Cielo, and (soon) Luna are used almost ex-
clusively for large-scale scientific simulations of national
importance. These simulations help ensure the safety, security,
reliability, and performance of the U.S. nuclear-weapons



TABLE I: Supercomputers used in this study

Machine Top500 Switch- Racks Nodes Cores Max. power/ Max. power/ LINPACK
rank boards rack (kW) system (MW) power (MW)

Roadrunner 10 4 272 3,060 122,400 15 4.08 2.35
Cielo 6 5 96 8,892 142,272 54 5.18 3.98
Luna 45a 1 35 1,540 24,640 24 0.84 0.28a

Total — 10 403 13,492 289,312 — 10.1 —
a The November 2011 LINPACK data represents an incomplete version of Luna containing only 14,080 cores.

stockpile without nuclear explosive testing [15]; they provide a
comprehensive understanding of the threat posed by weapons
of mass destruction; and they inform critical decisions related
to the entire nuclear-weapons life cycle, from design to safe
processes for dismantlement [16]. However, simulating macro-
scopic phenomena at the subatomic level leads to an unsatiable
demand for computing resources. Typical applications run for
long periods of time (often months of wall-clock time) on large
numbers of processors and perform only occasional I/O (a
few minutes every few hours) for checkpointing or writing out
results [17]. However, in addition to large, scientific simulations,
LANL supercomputers host a number of single-node jobs such
as compilations, debugging sessions, interactive usage, and
other tasks. Furthermore, it is common practice to run a large
number of modest-sized parameter sweeps (tens of nodes) to
identify likely parameters of interest then feed those parameters
into a few long-running simulations that occupy many hundreds
or thousands of nodes. In short, the workload running on LANL
supercomputers is qualitatively different from that running on,
say, Google’s [4].

IV. MEASUREMENTS AND ANALYSIS

In this section we consider two sets of power measurements.
Section IV-A analyzes the power drawn by three supercomput-
ers over a 16-month period running their normal workloads.
Section IV-B reports the results of some controlled power
experiments performed on one of these supercomputers in a
single 10-hour block of time.

A. Production workloads

We begin by presenting the power drawn over time for each
of Roadrunner, Cielo, and Luna. Figure 2 shows measured
power in kilowatts over a date range from the start of 2011 to
the end of April, 2012 for the three systems, and Table II
summarizes the data. The following are some points of
clarification:

• The y axis varies across the subfigures to more clearly
show the measured power relative to each machine’s
theoretical peak power and the power it consumed while
running the LINPACK benchmark, which is the metric that
orders the Top500 list of supercomputer performance [18],

• Luna’s LINPACK power is omitted because LINPACK data
has not yet been reported for the complete system.

• Luna came online more recently than the other two
systems so its power data extends over a lesser range.

• The small gap in data from the end of June to the
beginning of July 2011 represents a complete machine-
room shutdown as a precautious measure due to a major
wildfire coming dangerously close to the Laboratory [19].

• The large gap in data from October to November is due
to an upgrade of the switchboard-monitoring software that
resulted in some data loss.

TABLE II: Descriptive statistics of supercomputer power usage

Statistic Roadrunner Cielo Luna
(kW) (kW) (kW)

Maximum 1,733 4,043 682
Median 1,632 2,988 352
Mean (µ) 1,623 2,839 327
Std. dev. (σ ) 110 555 126

1) Initial observations: The following are some observations
one can make from the data shown in Figure 2 and Table II.
First, Roadrunner has the most consistent power draw of the
three supercomputers, with a relative standard deviation of
only 6.8% versus almost 20% for Cielo and almost 40% for
Luna. To determine if Cielo’s power variability is localized or
spread across the entire system, we plotted the individual power
contribution of each of Cielo’s five switchboards. As Figure 3
indicates, all five switchboards observe similar fluctuations in
power draw. Not all switchboards service the same number
of nodes, which is why the bottom two curves (magenta and
red) exhibit different average power draws from the top three
curves (green, blue, and cyan).

The second obseration one can make from Figure 2 and
Table II is that the scientific workload running on Roadrunner
draws only 69.4% of the power that LINPACK draws, and the
scientific workload running on Cielo draws only 75.1% of
LINPACK power. These numbers indicate that from a power
perspective, LINPACK is not particularly representative of the
scientific workload normally executed at LANL.

As a third observation, one can quantify what is sometimes
referred to as a supercomputer’s “trapped capacity”—the
difference between the infrastructure capacity allocated to a
given system and the actual peak demand of that system. Going
by the maximum power draw ever observed in the timeframe
represented by the data, can consider Roadrunner to have
2,347 kW (58%), Cielo to have 1,137 kW (22%), and Luna to
have 158 kW (19%) of trapped capacity. In practice, however,
facilities engineers typically include a safety margin between
the maximum power a system is expected to draw and the

http://www.top500.org/system/176027
http://www.top500.org/system/177170
http://www.top500.org/system/177454
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Fig. 2: Power draw over time of three LANL supercomputers
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Fig. 3: Per-switchboard power data for each of Cielo’s five switchboards

power available to that system to reduce the risk of tripping a
circuit breaker, as mentioned in Section III.

We now examine our data center’s trapped capacity in greater
detail.

2) Trapped capacity: Table III quantifies the amount of
trapped capacity available in LANL’s data center. It assumes
a safety margin of 20% below the maximum power listed in
Table I and considers different definitions of peak system
demand including the measured LINPACK value and the
maximum power draw observed. Note, however, that these
two values may not be distinct; either some applications do in
fact have similar power characteristics to LINPACK or, more
likely, our measurements include a few LINPACK runs.

Trapped capacity can be increased even further if one
assumes the ability to explicitly limit the power a system
draws by throttling frequency and voltage parameters, for
example by using Intel’s Node Manager [20]. Table III therefore
also lists the available trapped capacity if power is capped to
the mean power (µ) plus 1, 2, or 3 standard deviations (σ ),
enabling, respectively, an expected 68.3%, 95.5%, or 99.7%
of the workload to run at full speed.

For example, Table I lists Luna’s maximum power as
0.84 MW. Subtracting a 20% safety margin reduces this to
a usable maximum of 672 kW. Table II lists the mean and
standard deviation power draw of the programs running
on Luna as 327 and 126 kW, respectively. If we require
95.5% of the workload to run at full speed, Luna will need
µ + 2σ = 327+ 2× 126 = 579 kW of power delivered to it.
This leaves Luna with 672 kW−579 kW = 93 kW (∼14% of
672 kW) of trapped capacity, which is what is listed in Table III.

The data in Table III indicate that there is a large potential
for power improvements for Roadrunner but less for the other
systems unless power capping is utilized (which, according
to Laros et al.’s study, will degrade the performance of some
applications more than others [5]). By “power improvements”
we mean that more racks can be added without having to

upgrade the facility’s power infrastructure or that power costs
can be reduced by delivering less power to the system.

TABLE III: Trapped capacity relative to various power maxima,
assuming a safety margin of 20%

Assumed Roadrunner Cielo Luna
max. power (kW) (kW) (kW)

LINPACK 919 (28%) 164 (4%) —
µ +σ (68.3%) 1,532 (47%) 750 (18%) 219 (33%)
µ +2σ (95.5%) 1,422 (44%) 195 (5%) 93 (14%)
µ +3σ (99.7%) 1,312 (40%) 0 (0%) 0 (0%)
Max. obs. (100.0%) 1,531 (47%) 101 (2%) 0 (0%)

3) Job scheduling: It is possible to establish an upper
bound on the potential gain in power effficiency that can
be achieved by power-aware job scheduling. The maximum
potential savings in peak power for the workload represented
by Figure 2 would be hypothetically achieved by somehow
arranging all processes so that each supercomputer was running
constantly at the mean power draw for the period (i.e., with
no variability in power draw). This is because all of the
processes still would have to run, so the overall power used
for the period is fixed. The way to minimize the maximum
power draw would therefore be to have it remain constant
at the mean level. Thus, the maximum potential reduction in
peak power that can be attained by a perfect power-aware job
scheduler (and assuming completely malleable applications) is
1−mean power/max. power. For the production supercomput-
ers and production workloads used in our study, this implies a
maximum power improvement of 6.3% on Roadrunner, 29.8%
on Cielo, and 52.1% on Luna, according to Table II. Again, this
is a crude upper bound that makes some unrealistic assumptions
about application characteristics, but it does indicate that there
may exist the potential for a job scheduler to improve the
power usage of a large-scale scientific workload.

4) Energy usage: While most of our study focuses on power,
energy—the integral of power over time—is also an important



concern. We want to answer the following question:
For LANL’s workload, if power is reduced to the bare
minimum (i.e., idle power), how much slowdown in
execution speed can the workload tolerate without
increasing total energy?

For example, if power were reduced by half, then any
concomitant slowdown of less than 2x would result in a saving
of energy while a slowdown of more than 2x would result in
a squandering of energy.

We begin by determining the idle power for each of our
three supercomputers. Figure 4 replots Figure 2 as a histogram,
discarding outliers on the left part of the graph that are
presumably observed during full-system boot or power down.
Note that each figure is plotted with different axes to clarify the
shape of the curve; Roadrunner’s horizontal range, for example,
is extremely narrow. Idle power, drawn with a vertical red
line in each histogram, was calculated by selecting the first
“significant” rise (defined as 10% of the highest peak) and
corroborating that with visual inspection.

Given idle power, we can now treat that as the limit in
power saving achievable by throttling processor frequencies and
voltages. Table IV presents the data and outcome of our energy
calculation. By means of explanation, Total Time represents
Figure 2’s horizontal range but with gaps elided; Total Energy
is the area under the curve in Figure 2; and Idle Power is taken
from Figure 4 as described above. Scaled Time, the time that
the entire workload would take if run at idle power but the
same total energy, is computed as Total Energy ÷ Idle Power.
The tolerable slowdown is therefore the quotient of Scaled
Time and Total Time (i.e., measured time).

The conclusion one should draw from Table IV is somewhat
disappointing: Almost any slowdown in execution speed will
result in an increased energy cost for performing the complete
workload on any of the three supercomputers. Even Luna, the
most tolerant of slowdown of the systems shown in the table,
would need to run no more than 48% slower at idle power than
at average power in order to observe a net benefit in energy
expended.

On a more optimistic note, Roadrunner, Cielo, and Luna,
like most supercomputers, always run their CPUs at the highest
available clock rate (and therefore power) instead of using a
dynamic power governor to raise and lower clock speeds on
demand [21], as is common on desktop and laptop systems.
Consequently, it may be possible to lower the idle-power levels
below those shown in Figure 4 and thereby tolerate a greater
performance loss than what is indicated by Table IV.

B. Controlled studies

To complement our measurements of production workloads
over a long time frame (Section IV-A) we additionally per-
formed some controlled power studies on Luna. We were
granted exclusive access to the entire Luna system for 10 hours
and used this time in an attempt to answer the following
questions:

• How well do full-system power readings at the switch-
board match the aggregate intra-rack power readings?
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Fig. 4: Histograms of supercomputer power usage over the
time period from 1JAN2011 to 30APR2012

• Are real applications’ power characteristics qualitatively
similar or different to those of kernel benchmarks?

Our methodology was as follows. We selected two kernel
benchmarks to run—matrix-matrix multiplication (mmult) and
the High-Performance LINPACK (HPL) benchmark [18]—and
two representative LANL applications—xRAGE, a radiation-
hydrodynamics code [22], and SPaSM, a molecular-dynamics



TABLE IV: Maximal tolerable slowdown for a fixed energy budget

System Total Total Idle Scaled Tolerable
time (s) energy (J) power (W) time (s) slowdown

Roadrunner 3.32×107 5.26×1013 1.56×106 3.36×107 1.01 (1%)
Cielo 3.33×107 8.02×1013 1.84×106 4.36×107 1.31 (31%)
Luna 9.79×106 3.08×1012 2.12×105 1.45×107 1.48 (48%)

code [23]. We began by letting Luna idle to get a consistent
idle-power reading. Then we ran each of mmult, HPL, xRAGE,
and SPaSM in turn, monitoring power at both the switchboard
level and the “shelf” (10-node) level, allowing Luna to return
to baseline power between runs. mmult is a single-process
program and was run simultaneously on every core of the
machine. The rest of the programs were run as 64-node
jobs, filling the machine with those. We chose 64 nodes
because, as Figure 5 indicates, over 50% of the jobs that run
on Roadrunner, Cielo, and Luna utilize 64 or fewer nodes.
(Note that this is a measure of job count, not execution
time; otherwise the numbers would be quite different.) The
cumulative density function (CDF) drawn in the figure excludes
single-node jobs, which are assumed to represent compilations,
debugging sessions, interactive usage, and other tasks that are
not production runs of scientific applications.
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Fig. 5: Histogram of job sizes from 1JAN2011 to 30APR2012

To ensure that our test workload does not leave the system
in a different power state from how it began we then re-ran
mmult and HPL to confirm that the power readings matched
the previous readings. To quantify the impact of our choice
of using 64-node jobs we ran a full-system (1,540-node) HPL
job. Finally, after a long cooling-down period (partly including
a few experiments that failed to launch), we re-ran SPaSM to
get a second reading on its power usage.

When analyzing our data after our 10-hour session, we
discovered, to our chagrin, that only 15 of the shelf-level
power monitors had returned reliable data. Subsequent small-

scale experimentation with Luna indicated that polling those
monitors too quickly sometimes puts them into an erroneous
state. We therefore employed some statistical analysis of the
good monitors, described below, to compensate for the missing
data. Furthermore, it was not possible to precisely synchronize
in time the readings of the shelf power monitors (relative to the
speed at which applications can change their power demands)
so there is some skew in the readings. Again, we applied
rigorous statistical analysis to adapt as well as possible to the
available data.

Figure 6 plots the results of our experiments on Luna. In that
figure, “HPL” represents the set of 64-node LINPACK jobs, and
“HPL2” represents the full-system LINPACK job. Measurements
of the 15 good shelf-level power monitors and the aggregate
of the switchboard monitors are plotted in Figure 6(a). The
thick, black line in the figure represents the switchboard power,
and the the thin, colored lines represent per-shelf power. As
Figure 6 indicates, the shelf power draws are fairly consistent.
The shelf power draw curves were multiplied by 154 so that if
every shelf behaved as that particular shelf, it would represent
the cumulative power draw from all shelves. Also, these curves
are not the raw data; a small amount of kernel smoothing was
performed to fill in missing records.

To get a handle on whether the differences between programs
seen in Figure 6(a) are statistically real, we performed a one-
way analysis of variance (ANOVA) on the maximum power
draw during the execution of each code. This leads to largely
significant differences between all programs except between
HPL2 (the full-system LINPACK) and HPL (LINPACK on each
node), and between HPL2 and mmult, both of which are
mildly significant differences. SPaSM and xRAGE are also not
significantly different in terms of expected maximum power
draw.

Because of time alignment issues—the shelf times lag by as
much as 30 seconds—it is virtually impossible to recover
any kind of useful comparison from switchboard to shelf
power on ramp up and cool down (since they happen so
rapidly). Therefore, Figure 6(b) plots the comparison between
switchboard power draw and a projection of the cumulative
shelf power draw during idle times (in between blue bars) and
during the middle of code execution (in between red bars).
The projection of cumulative shelf power draw was obtained
by resampling the 15 shelf curves that were collected to fill in
the “missing” 139 shelves to get plausible records for the total
of 154 shelves. This can be considered an empirical Bayesian
procedure [24] where the distribution of shelf power curves
is estimated with the empirical distribution [25] (i.e., each
observed curve is given probability 1/15), and the uncertainty in
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Fig. 6: Controlled power studies on Luna

the total is then sampled according to the estimated distribution.
This process of sampling the missing shelf power curves,

then adding them up produces many plausible curves for the
cumulative shelf power draw. 1000 such curves are plotted
in Figure 6(b) (in cyan for idle times and magenta for code
execution). The band of cyan and magenta curves therefore
includes the uncertainty in the cumulative shelf power resulting
from our ability to obtain power data for only 15 of the shelves.
However, this does not include uncertainty related to the time of

measurement, which is likely important, especially for rapidly
changing (in terms of power usage) codes like SPaSM.

To highlight the differences between the switchboard curve
and the plausible cumulative shelf power curves, Figure 6(c)
replots the data as deltas between application-execution and
idle times. Overall, there is about a 53 kW difference (averaged
across all time in the plot and across plausible shelf power
curves), with a confidence interval for the average difference
over the time of the experiment of (51.7,54.4) kW (i.e., an
accounting of the uncertainty in total shelf power).

It is very difficult to assess the differences between switch-
board and shelf power locally in time because of the time
lag issues with the shelf-power readings mentioned above.
This is particularly problematic for a program like SPaSM,
whose power draw fluctuates rapidly during execution. Hence,
it is unclear whether the differences between switchboard and
shelf power between experimental conditions (including idle
condition) in Figure 6(c) are due mostly to program differences
or time resolution/accuracy issues. With that in mind, an
ANOVA of the max power difference (between switchboard
and shelf) during the 16 experimental trials (including the
eight code runs and eight idle times as separate trials) found
no significant differences between idle, mmult, HPL, xRAGE,
and HPL2. However, SPaSM was significantly different from
all other programs and from idle. Again, it is unclear how
much of this is simply a time-alignment issue.

V. FUTURE WORK

Having access to real-world power data on production
supercomputers is an invaluable first step towards a variety
of potential power studies. For starters, future work ought to
correlate power data with job information. LANL maintains
vast data on every job ever run on Roadrunner, Cielo, and
Luna. Finding ways to link power measurements with job
characteristics may result in some interesting insights regarding
the way different applications consume power. If these insights
lead to a predictive capability, then avenues for future research
can include means for full-system power provisioning or power
capping, broadening the node-level scope of current approaches
such as Intel’s Node Manager [20]. This can include job-
scheduling aspects such as coscheduling high- and low-power
jobs—or even phases within a job (e.g., computation versus
file I/O)—to maintain a specified average power.

VI. CONCLUSIONS

In this work we presented power measurements taken
over a long period of time (16 months) on three large and
architecturally disparate supercomputers (two Top10 systems
and a Top50 system) running production workloads. To our
knowledge, this is the first non-controlled study of power usage
of a scientific workload performed at supercomputing scales.
The following conclusions can be drawn from the data we
presented in this paper:

• Variability in power draw can be quite different across
different architectures, even when running a similar mix
of applications.



• LANL’s scientific workload draws substantially less power
on average (70–75%) than the LINPACK benchmark.
Consequently, if supercomputing facilities are specced to
LINPACK’s power needs, a substantial amount of trapped
power capacity will be available to the data center.

• Throttling performance to maintain a maximum power
level has the potential to succeed without disrupting
the majority of applications. An an extreme example,
Roadrunner can have its allocated power capped by 40%—
even assuming a 20% safety margin below “nameplate”
power—without impacting more than 0.3% of the work-
load that normally runs on that machine at LANL. This
translates into an annual savings of over $1.3 million
(US$), assuming a power and cooling cost of $1 million
per megawatt per year [26].

• A simple statistical analysis of our power data indicates
that there may be opportunity for a power-aware job
scheduler to reduce the LANL workload’s peak power
consumption by coscheduling jobs that consume little
power alongside jobs that consume substantial power.

• There is so little difference between average and idle
power on the three supercomputers studied that the best
way to reduce the energy needed to perform a scientific
workload is to run at full speed/maximum power rather
than trying to reduce power and pay a penalty in execution
time.

In summary, we have analyzed the power used by a
production supercomputing environment. While our results
are unlikely to precisely represent other supercomputing data
centers, supercomputing platforms, or workloads, we believe
that our methodolgy for analysis can be applied universally to
determine salient characteristics about the systems in question
and about the potential to achieve greater power efficiencies
than what are currently observed.
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